The relationship between mutation frequency and replication strategy in positive-sense single-stranded RNA viruses.
نویسندگان
چکیده
For positive-sense single-stranded RNA virus genomes, there is a trade-off between the mutually exclusive tasks of transcription, translation and encapsidation. The replication strategy that maximizes the intracellular growth rate of the virus requires iterative genome transcription from positive to negative, and back to positive sense. However, RNA viruses experience high mutation rates, and the proportion of genomes with lethal mutations increases with the number of replication cycles. Thus, intracellular mutant frequency will depend on the replication strategy. Introducing apparently realistic mutation rates into a model of viral replication demonstrates that strategies that maximize viral growth rate could result in an average of 26 mutations per genome by the time plausible numbers of positive strands have been generated, and that virus viability could be as low as 0.1 per cent. At high mutation rates or when a high proportion of mutations are deleterious, the optimal strategy shifts towards synthesizing more negative strands per positive strand, and in extremis towards a 'stamping-machine' replication mode where all the encapsidated genomes come from only two transcriptional steps. We conclude that if viral mutation rates are as high as current estimates suggest, either mutation frequency must be considerably higher than generally anticipated and the proportion of viable viruses produced extremely small, or replication strategies cannot be optimized to maximize viral growth rate. Mechanistic models linking mutation frequency to replication mechanisms coupled with data generated through new deep-sequencing technologies could play an important role in improving the estimates of viral mutation rate.
منابع مشابه
Visualisation of direct interaction of MDA5 and the dsRNA replicative intermediate form of positive strand RNA viruses.
The innate immune system is a vital part of the body's defences against viral pathogens. The proteins retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation associated gene 5 (MDA5) function as cytoplasmic pattern recognition receptors that are involved in the elimination of actively replicating RNA viruses. Their location and their differential responses to RNA viruses emphasises ...
متن کاملDetection and Molecular Characterization of Gammacoronavirus in Quail Population in Iran
BACKGROUND: Gammacoronaviruses, which are single-stranded, positive-sense RNA viruses, are responsible for a wide variety of existing and emerging diseases in birds. The Gammacoronaviruses primarily infect avian hosts. OBJECTIVES: This study aimed to investigate the genetic diversity of Gammacoronaviruses in quail population in Iran. METHODS: In the period from 2016 to 2018, samples from 47 qua...
متن کاملRibonuclease from Bacillus Acts as an Antiviral Agent against Negative- and Positive-Sense Single Stranded Human Respiratory RNA Viruses
Bacillus pumilus ribonuclease (binase) was shown to be a promising antiviral agent in animal models and cell cultures. However, the mode of its antiviral action remains unknown. To assess the binase effect on intracellular viral RNA we have selected single stranded negative- and positive-sense RNA viruses, influenza virus, and rhinovirus, respectively, which annually cause respiratory illnesses...
متن کاملModeling the Replication Mode of Positive-sense Rna Viruses Using Dynamical Systems
In this talk we study nonlinear mathematical models describing the intracellular time dynamics of viral RNA accumulation for positive-sense single-stranded RNA viruses. Our models consider different replication modes ranging between two extremes represented by the geometric replication (GR) and the linear stamping machine replication (SMR). We first analyse a model that quantitatively reproduce...
متن کاملInhibition of a large double-stranded DNA virus by MxA protein.
Increasing evidence points to the importance of the interferon (IFN) response in determining the host range and virulence of African swine fever virus (ASFV). Infection with attenuated strains of ASFV leads to the upregulation of genes controlled by IFN pathways, including myxovirus resistance (Mx) genes that are potent effectors of the antiviral state. Mx gene products are known to inhibit the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings. Biological sciences
دوره 277 1682 شماره
صفحات -
تاریخ انتشار 2010